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Summary 

Numerical methods are outlined for computing the velocity potential, and its derivatives, for linearized 
three-dimensional wave motions due to a unit source with harmonic time dependence beneath a free surface. 
Two distinct cases are considered where the fluid depth is either infinite, or of constant  finite depth. Efficient 
algorithms are developed in both cases, to replace the numerical evaluation of the relevant integrals by 
multi-dimensional approximations in economized polynomials. This technique is substantially faster than 
conventional direct methods based on numerical integration. 

1. Introduction 

The source-potential, or Green function, is the fundamental element in the analysis of 
wave-induced motions and forces acting on floating or submerged vessels. In the case of 
most practical importance, a numerical model is based on distributions of sources, and 
opt ional~ of higher-order singularities analogous to dipoles, located on the submerged 
portion of the body surface. This procedure, which can be justified by Green's theorem, 
requires the solution of an integral equation in the domain of the body surface, either for 
the source strength or for the velocity potential. In practice, the body surface is discretized 
in an appropriate manner, and the integral equation is replaced by a finite system of linear 
equations. 

Two distinct numerical problems must be overcome to implement this approach 
successfully for a fully three-dimensional body geometry. First, to describe the body 
surface with a reasonable degree of fidelity, a large number of discrete "panel"  elements 
must be utilized, typically between 100 and 1000. The corresponding linear system of 
equations is characterized by a square matrix of complex coefficients with the same 
dimension, which must be solved by a suitable application of linear algebra. Numerous 
subroutines are available to perform this task efficiently. 

The second numerical problem, peculiar to the field of free-surface hydrodynamics, is 
the evaluation of the source potential and its derivatives. These are complicated mathe- 
matical functions, which must be evaluated successively for each combination of panels, 
i.e., between 104 and 106 times for each body geometry and frequency of wave encounter. 
Since a realistic description of the wave-body interactions dictates that this computation 
should be repeated for 10-100 frequencies, between 105 and 108 evaluations of the source 
potential are required to analyse a single vessel. This is regarded as the main difficulty in 
performing three-dimensional computations of hydrodynamic parameters such as the 
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motions of a body in waves, or of the pressure forces exerted on the body in the same 
environment. 

Mathematical expressions for the oscillatory source potential are well known. The 
standard reference for these functions is Wehausen and Laitone [1]; recent references to 
the same expressions are Sarpkaya and Isaacson [2], Susbielles and Bratu [3], and Mei [4]. 
The classical representation is in terms of a semi-infinite integral involving a Bessel 
function and a Cauchy singularity. Separate expressions exist for infinite and finite 
(constant) depth of the fluid, but their forms are similar and the infinite-depth limit can be 
recovered as a special case of the finite-depth integral representation. The principal 
drawback of these expressions is that they are extremely time-consuming to evaluate 
numerically. 

In the case of infinite depth, a simpler analytic representation for the source potential 
exists as the sum of a finite integral, with a monotonic integrand involving elementary 
transcendental functions, and a wave-like term of closed form involving Bessel and Struve 
functions. This expression, which was suggested by Havelock [5], has been rederived or 
publicized by Kim [6], Hearn [7], Liapis and Dahle [8], Noblesse [9], and Newman [10]. In 
the case of finite depth an analogous alternative to the conventional integral representa- 
tion is due to John [11] in the form of a discrete eigenfunction expansion. 

Havelock's and John's expressions for the source potential are complementary, with the 
former valid only for infinite depth and the latter for finite depth. But despite the 
fundamental differences in their derivations and analytic forms, these two alternatives to 
the conventional integral representations have common attributes including (1) avoidance 
of the relatively complicated numerical analysis of the conventional integrals, and (2) an 
analytical decomposition of the source potential into an oscillatory wave-like component 
of relatively simple form, plus a local component which oscillates at most a finite number 
of times. However, (3) John's series and Havelock's integral are singular along the vertical 
axis which coincides with the source point, and these formulae are numerically inefficient 
within a finite radius of that axis. • 

This paper describes efficient numerical algorithms for computing the oscillatory source 
potential, and all relevant derivatives of this function, throughout the domain of physical 
importance. We start from the premise that numerical integration should be avoided in all 
cases. Analytical series expansions are used where these are computationally efficient, and 
in the remaining subdomains methods are described for deriving systematic multi-dimen- 
sional polynomial approximations to provide direct evaluations of the source potential. 

The Bessel functions J,,(x) and Y,,(x) provide familiar examples to illustrate our 
philosophy. One might define these functions initially by their integral representations, 
which involve oscillatory integrands and either a finite or infinite range of integration, 
respectively. Numerical integration provides a possible algorithm for the evaluation of 
these functions, but with a relatively large computational burden due to the time required 
for many evaluations of the trigonometric functions in the  integrands, and due to 
relatively slow convergence of the infinite integral for Y,. Instead, standard algorithms for 
computing these special functions establish a partition point at some finite value of x, and 
utilize analytic properties of the functions to develop complementary algorithms on each 
side of the partition. For small values of x the ascending series expansions are computa- 
tionally efficient, and can be refined by the technique of polynomial economization. For 
large values of x the asymptotic expansions are not sufficiently accurate by themselves, 
but these provide guidance for suitable forms of polynomial approximations, in descend- 
ing powers of the argument x, for the modulus and phase of these functions. In this 
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manner an efficient pair of algorithms is obtained for all values of x, involving relatively 
simple polynomial expressions and a few evaluations of the elementary transcendental 
functions. (Examples of the results are contained in Abramowitz and Stegun [12]; more 
refined approximations and an outline of the above procedure are given by Newman [13].) 

Similar techniques can be applied to a function of two or more variables, such as the 
source potential. As in the one-parameter case, the first step in developing an efficient 
computational algorithm is to understand the analytical behavior of the relevant function, 
and to separate singular or rapidly oscillating dements  from the part to be approximated. 
In the present context this includes the study of analytic expansions, such as John's 
finite-depth infinite series, which can be used directly in domains where they are most 
effective, or alternatively to indicate the forms for polynomial approximations in the 
subdomains where the expansions themselves are not useful. Multi-dimensional Chebyshev 
expansions provide an efficient basis for developing the polynomial approximations to 
any desired degree of accuracy. 

In infinite depth the portion of the source potential excluding the elementary singular- 
ity l/r, where r is the distance between the source and field points, can be expressed as a 
nondimensional function of two independent parameters. These two nondimensional 
coordinates are the radial and vertical separation between the field point and the image 
source point above the free surface, normalized by the wavenumber. Since these two 
coordinates may take on all positive values, one quadrant of a two-dimensional plane 
must be considered. Three different series expansions are numerically efficient around the 
boundaries of this quadrant, and can be complemented by an asymptotic expansion for 
large radial distance from the origin. This leaves a central domain where polynomial 
approximations in two variables are required. The asymptotic expansion suggests an 
appropriate form to assume in the central domain, with a residual correction which is 
amenable to polynomial representation. Once the coefficients of this polynomial are 
derived, the source potential and its derivatives may be evaluated for all points in the 
quadrant. 

Complementary developments are considered in Section 3 for the finite-depth case. 
Here John's expansion is effective provided the horizontal component R exceeds half the 
depth h. Returning to the integral expression in the converse domain, the most obvious 
difficulty in developing polynomial approximations is that the source potential is a 
function of four nondimensional parameters. The degree of this difficulty is reduced by 
expressing the potential as the sum of two similar functions, each depending on only three 
parameters. Finally, prior to deriving polynomial approximations in three variables, an 
appropriate combination of infinite-depth source potentials is subtracted from the finite- 
depth integral to accelerate the convergence of the integral itself, and to leave a 
nonsingular remainder. With the three-dimensional polynomials and appropriate combi- 
nations of infinite-depth potentials used for R/h < 1/2,  and the infinite-series representa- 
tion used otherwise, the finite-depth source potential and its derivatives may be evaluated 
for all values of the relevant coordinates. 

The ultimate accuracy required is an important factor in any numerical computation, 
and especially in the development of polynomial approximations. An arbitrary degree of 
precision can be attained, in principle, but it is obvious that relaxing the tolerance of the 
computations will lead to simpler approximations, smaller storage requirements and faster 
running times. Here, guided by the widespread use of computing machines with single- 
precision accuracy of 6 -7  decimals, an absolute or relative accuracy of 6D has been 
selected for all approximations of the source potential and its first derivatives, exclusive of 
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the elementary singularity 1/r. No attempt is made to preserve relative accuracy when a 
computed quantity is of small magnitude, since its contribution to the integrals over the 
body surface can be assumed to be correspondingly small. 

With this tolerance in the coefficient matrix, a high degree of precision can be 
maintained in the ultimate solution of the linear system of equations and the dominant 
numerical errors may be associated with the discretization of the body surface. The latter 
tolerance can be controlled, by systematically increasing the number of panels, and the 
accuracy of the final hydrodynamic parameters can then be judged with some confidence. 
In special circumstances other choices of precision may be appropriate for the evaluation 
of the source potential, and one feature of systematic polynomial approximations is that 
these can be derived to any desired degree of accuracy. 

The following sections describe sets of algorithms for the source potential which have 
been found to be efficient with the above accuracy. Specific computing times are cited in 
Section 4 to confirm the value of this approach. 

In all cases the derivatives follow directly by analytic differentiation of the correspond- 
ing algorithm. In the infinite-depth case only the first horizontal derivative must be 
computed, since the vertical derivative can be expressed as a linear combination of the 
potential and the inverse-square-root, and all higher-order derivatives can be derived by 
algebraic combinations of the source potential and its horizontal derivative. 

Throughout this work the complex time-dependent factor exp(i~0t) is assumed, and our 
primary concern is to evaluate the real part of the corresponding complex factor 
G(x, y, z; ~, ~1, ~'). Here (x, y, z) is a Cartesian coordinate system defining the field point, 
(~, 7/, ~) is the location of the source in terms of the same coordinates, z = 0 is the plane of 
the undisturbed free surface and the fluid domain corresponds to negative values of z. The 
vertical position of the source is assumed to be negative or zero. The fluid depth is 
assumed to be either infinite, or of constant depth h. The frequency and gravitational 
acceleration g define the parameter K = o~2/g, which corresponds to the wavenumber in 
the infinite-depth case and will be used more generally to nondimensionalize all length 
scales. Anticipating axisymmetry about the vertical axis coincident with the source, the 
only nontrivial horizontal coordinate is the radius R, defined by the magnitude of the 
horizontal vector with components (x - ~, y - 7/). 

2. The infinite-depth case 

In its conventional form (cf. Wehausen and Laitone [1], equation 13.17) the source 
potential is defined by the expression 

Here J0 denotes the Bessel function of the first kind, order zero, and the contour of 
integration passes above the pole to satisfy the radiation condition of outgoing waves at 
infinity. In terms of the two nondimensional coordinates 

X = K R ,  r=rlz +gl 

(1) may be written in the form 

G =  [R 2 + (z - ~)2] -1/2 + KF( X, Y ) -  2~riK e -  % ( X ) .  (2) 
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The principal task here is to evaluate the nondimensional real function F(X, Y) for all 
relevant values of the parameters (X, Y) of possible physical interest. Rewriting this 
function from (1), and also in the alternative form of Havelock's finite integral (cf. [10]), 
two equivalent definitions for F are given by 

F( X, Y) -  ° ° k + l  -kr  - fo 'ff-zTe J°( kX)dk' (3a) 

( X 2 +  y2)  -1/2 = 

_2foYer- V( X 2 + t=)-'/2dt. (3b) 

In the latter expression Y0 is the Bessel function of the second kind, and H 0 denotes the 
Struve function as defined by Abramowitz and Stegun [12] (Chapter 12). These functions 
of one variable, and the corresponding Bessel function Jo which is required for the 
imaginary part of (2), can all be approximated by standard methods. Algorithms for these 
particular special functions which are efficient in the present context are developed by 
Newman [13]. In (3a) the integral is defined as the Cauchy principal value. 

Equation (3a) is the most convenient starting point for small values of X, since the 
Bessel function in this integral can be expanded in even powers of kX and integrated 
term-by-term. The result is a double infinite series with positive powers of X and negative 
powers of Y, first derived by Hess and Wilcox [14] and subsequently by Noblesse [9]: 

F(x, r)= (x:+ + 2 ~ (-X2/4)"( 
. = o  ( n ! )  ~ 

(my,.- 1)! e- YEi(Y)). (4) 
ra=l 

The exponential integral Ei(Y) ([12], Chapter 5) can be approximated in a straightforward 
manner, since it is a function of only one variable. Useful continued-fraction and 
rational-fraction approximations for this function are given by Cody and Thacher [15]. 
The remaining summation in (4) is straightforward, in the domain of convergence X < Y. 
For 6D accuracy this series can be truncated with n ~< 9, throughout the domain X/Y  < 0.5. 

An alternative series expansion can be derived from (3b), by expanding the last 
exponential function in powers of t and integrating term-by-term. The result, derived by 
Newman [16], differs from (4) insofar as it involves positive powers of both coordinates 
(X, Y) and is uniformly convergent throughout the full domain of interest: 

F(X, Y) = (X  2 + y 2 ) - ' / *  _ 2 e-r(Jo(X) log(Y/X+(1 + y2/X2)'/2) 

~" ~" 2 +TYo(X)+~-~Ho(X)(X + y:)'/* 

+ ( x * +  r*) '/2 Y'. c , , , x 2 " Y "  . ( 5 )  
m--O n=l 
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Here the coefficients C,,, are defined by 

Co. = [(n + 1)(n + 1 ) ! ] - ' ,  

[ n + 2 ] C  
Cmn = -- ~ - n - ' ~  ] rn--l,n+ 2 

The double series in (5) can be truncated and economized in both variables; 6D accuracy 
is achieved throughout the domain 0 < X < 3.7, 0 < Y < 2 with a total of 33 terms. 

We next consider the case where X/Y  is large. Here an asymptotic expansion can be 
derived in a straightforward manner, by expanding the inverse square-root in the 
integrand of (3b) in even powers of the ratio t/X, and integrating term-by-term. Thus 

1 f Y  t -  
x J0 e Y(I+t2 /X2)-1 /2dt  

1 y . X-2n 
=._X ~, (_)  ____~. (½.~.5. . . . . (n_  l/2))i2,(y) 

n=O 

(6) 

where 

I 0 = l - e  -Y, I2n=fre'-rt2"dt. 
"0 

Partial integration of the last integrals yields the recursion formula 

12 n = y 2 n  _ 2 n y 2 . - 1  + 2n(2n - 1)I2n_ 2. 

Truncation of (6) with N = 3 gives 6D accuracy in the domain X > 3.7 provided X/Y  > 4. 
The same accuracy can be achieved throughout the domain 2 < X/Y  < 4 if the descending 
series (6) is transformed to a continued fraction. 

Finally we consider the asymptotic expansion of (3b) when both X and Y are large. 
Partial integration may be employed to derive the relation 

foret-r( X2 + t2)-l/2dt 

M ( d  m Z (__)m .~..~(S2..l_ y2 ) -1 /2  

m=O 

[ d "  )-1/2] 1 - e - r  ~ -~(X2 + / 2  j t=oj  

~Mfr,_y d M +(-"  Jo~ ~t ~(X2+t2)-l/2dt" (7) 

In the domain Y > 20 and X > 8 the summand proportional to exp( - Y) is negligible, and 
the last integral in (7) also is negligible if M = 4. The remaining terms in (7) can be 
expressed more directly in terms of spherical harmonics, and the desired result follows in 
the form 

4 

foYet-Y( X 2 + t2)-l/2dt --- ~, n!P~(sin O)r -t"+l) (8) 
n~O 
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where P, is the Legendre polynomial, and (r, 0) denote polar coordinates such that 
X=  r cos 0, Y= r sin 0. This asymptotic expansion gives 6D accuracy throughout the 
domain X > 8, Y > 20. 

At this stage relatively simple expansions have been developed for all but a central 
domain of the X, Y quadrant. The remaining task is to seek numerical approximations 
more directly, for the domain 2 < Y < 20 with X / Y  intermediate between the regions of 
applicability of (4) and (6). After some numerical experimentation, guided by the 
intermediate form of the asymptotic expansion (7), the following form has been found to 
give a slowly-varying residual function R(X, Y), which can be approximated effectively 
by two-dimensional polynomials: 

fore ' -r(X2 + t2)-,/2dt = ( X  2 + y 2 ) - , / 2 _  e_r/X+ y ( x  2 + y2)-3/2R(X, y). 

(9) 

The numerical procedure used for this purpose can be described briefly as follows. The 
function R(X, Y) is evaluated for arbitrary points in the relevant domain by integrating 
the finite integral in (9) with double-precision accuracy in the manner outlined in [10]. 
Double Chebyshev polynomial expansions are then generated for this function, and 
truncated to the desired accuracy by neglecting all coefficients larger than a corresponding 
tolerance. Conversion of the Chebyshev expansions to finite double series in ordinary 
powers of X and Y facilitates the subsequent routine use of the algorithm. It has been 
found that subdividing the central domain at Y= 4 and again at Y= 8 enables R(X, Y) 
to be approximated in each of the three subdomains with a maximum of 37 nonzero 
polynomial coefficients. 

Summarizing the algorithms described above, for the case of infinite depth, the source 
potential and its derivatives are expressed in separate subdomains of the X, Y quadrant, 
with an appropriate form of approximation in each subdomain. Most of these approxima- 
tions are in the form of double polynomials in powers of X and Y, with coefficients which 
are determined separately in each subdomain. Typically there are 30-40 terms in these 
polynomials, or a corresponding number of floating point operations in the evaluations 
based on (4) or (6). (In practice, the ultimate choice of boundaries between these separate 
subdomains has been based on the objective of similar computing time in each regime.) 

3. The finite-depth case 

In a fluid of constant finite depth h, the source potential can be expressed in terms of a 
contour integral analogous to (3a), 

+ [ + - "  

+ 2 r  ~o (k + K) cosh k(z + h) cosh/~(¢ + h) 
e-khJo( kR )dk (lOa) Jo 

or, alternatively, John's [11] infinite-series expansion 
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G = 2 ~  
K 2 _ k  2 

cosh ko( z + h) cosh ko(~ + h )[ Yo( koR ) + iJo( koR )] 
k20 h - K2h + K 

oo k~ + K  2 
+ 4  n~__ 1 kZH + KZH_ K cos k . ( z  + h) cos k.(~ + h)Ko(k,,R ). (10b) 

Equations (10a, b) are given by Wehausen and Laitone ([1], equations 13.18, 13.19, 
respectively, with a typographical correction in the latter). In (10b) the wavenumber k 0 is 
defined as the positive real root of the transcendental equation k t anh(kh)=  K, and k,  
denotes the set of corresponding imaginary roots, defined more explicitly as the positive 
real roots of the equation k t an (kh)=  - K .  K 0 is the modified Bessel function of the 
second kind. 

In estimating the numerical utility of the series (10b) it is important to note (with an 
obvious ordering of the roots) that 

~r(n - 1)  ~ k . h  <~ ¢rn 

and, for large n, 

Ko( k,,R ) = O ( e x p ( - ~ r n R / h ) ) .  

Thus the rate of convergence of (10b) depends primarily on the ratio R/h, and the 
number of terms required for a given accuracy is proportional to h/R. The series (10b) is 
practically useless for small values of R/h, since each summand contains a logarithmic 
singularity when R/h = 0. Numerical experience confirms these estimates, and [6h/R] is 
found to be an appropriate number of terms in the series to achieve 6D accuracy in the 
domain R/h > 1/2.  (Some improvement can be affected in the convergence for small R/h 
by subtracting a simpler series with the same asymptotic form for large n, cf. equation 
8.526 of Gradshteyn and Ryzhik [17]. This identity is useful in relating the limiting form 
of (10) for Kh -~ 0 to an image system of elementary sources, but for small finite values of 
Kh the logarithmic behavior of each term is significant and cannot be removed in this 
manner.) 

A complementary analysis for smaller values of R/h may be based on the integral 
expression (10a). For this purpose nondimensional parameters are introduced as follows: 

X =  KR, r =  KIz{, Z =  KI I, H =  Kh. 

Utilizing the product formula for two hyperbolic cosines, the real part of (10a) is 
expressed following John [11] in the form 

Re(G) = KL(X,  ] Y -  Z], H) +KL(X,  2 H -  Y -  Z, H) (11) 

where the auxiliary function L is defined by 

V ' H ) = ( X 2  + V2)-I/2 + I'°°J'o k (k + l) cosh(kV)s_~nh_k_i_i~._~_~shkH e -kHjo(kX)dk . "  - L( X, (12) 

Since Y and Z are restricted to the fluid domain (0, H) ,  the vertical coordinate V in (12) 
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lies in the interval (0, 2H) .  Note that one function of four independent parameters 
(X, Y, Z, H )  has been replaced in (11-12) by the sum of two functions, each depending 
on only three parameters (X, V, H).  Anticipating the ultimate approximation of these 
functions in terms of multi-dimensional polynomials, this represents a major simplifica- 
tion. 

The rate of convergence of the integral in (12) can be accelerated by adding and 
subtracting an appropriate function which is asymptotically equivalent to the integrand 
for large k. A judicious choice for this function leads to the result 

L( x,  v, 1-1) 

= ( X 2 +  V2) -1/2 +F(X, 2 H -  V)+F(X, 2 H +  V) 

f0oo{ 1 2e -k" } + k sinh kH - cosh kH -k-U- (k + 1) cosh(kV) e-knJo(kX)dk.  

(13) 

As k tends to infinity the integrand in (13) is of order e x p ( - 2 k H )  or smaller. The two 
additional functions F in this decomposition are the integrals of the two portions of the 
function subtracted from the integrand which correspond to the expansion of the 
hyperbolic cosine cosh(kV) in a pair of exponential functions. In view of (3a), these extra 
integrals are identical to the infinite-depth source potential with indicated values of the 
vertical coordinate. (A more obvious decomposition could be made with only the 
dominant exponential term retained from the hyperbolic cosine, and with only the first of 
the two functions F added, but the resulting difference integral is not even in V, and thus 
is more difficult to approximate in polynomials.) 

It is pertinent to note that the integral in (13) is regular near X =  0 for all relevant 
values of V. Thus the singular behavior of the finite-depth source potential for small 
values of the physical coordinates is identical to the infinite-depth potential, as displayed 
in (5). This observation extends the asymptotic approximation of (13) given by John [11], 
and corresponds with the physical interpretation that if the source and field points are 
sufficiently close to each other, and to the free surface, the singular part of the potential is 
not affected by the finite depth. More significantly, in the present context, the regular 
behavior of the integral which remains in (13) implies that it can be expanded as a 
polynomial in even powers of the coordinates X and V, multiplied by coefficients which 
depend on H. Finally, in a preliminary assessment of (13), the exponential bound on the 
integrand for large kH implies that the latter coefficients will tend to zero algebraically for 
large H. Except possibly for H = 0, these coefficients should be well behaved and 
expressible as polynomials in the depth H or its inverse. Thus the integral which remains 
in (13) is an effective form to approximate by three-parameter polynomials in (X, V, H).  

An ad hoc approach has been followed to approximate the integral in (13). In the first 
step the Bessel function Jo(kX) is expanded in even powers of kX. Preliminary computa- 
tions reveal that for the domain X/H < 0.5 this expansion can be truncated with six 
terms, corresponding to the even powers 0 through 10. A double-precision routine is used 
to compute this family of six integrals, as functions of (V, H),  with contour integration 
utilized in the complex k-plane to avoid the loss in accuracy inherent with a conventional 
numerical integration scheme in the vicinity of the two poles. The six integrals are 
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approximated by double Chebyshev expansions in a manner analogous to that described 
for the function R(X, Y) in Section 2. Finally, triple Chebyshev expansions are con- 
structed from the monomials in X, economized, and converted to triple polynomials of the 
desired form in X, V, and H. The highest powers of X and V which are required after 
economization are 8 and 14, respectively. With partitions at H = 2 and H = 4, approxi- 
mately 300 coefficients are needed in each subdomain. In the usual application where 
many evaluations are required with different values of X, V, for the same H, the 
polynomials in H can be evaluted and stored as a total of 33 nonzero coefficients for the 
remaining two-parameter polynomials in X and V. 

Finally, the singular behavior of the integral in (13) should be noted in the limit H ~ 0. 
After an asymptotic analysis it is possible to show that 

fo~k2"(k + 1 ) c o s h ( k V ) e - k " (  1 2 e  - k "  } 
k sinh kH'-- cosh kH ~---~ d k 

k 2 H -  H 2 + H 
cosh(k0V ) log(KoH ) - 4  e -2n  cosh H log H + . . . .  (14) 

Here the neglected terms ( . . . )  are regular in H. Sufficiently well-behaved Chebyshev 
expansions result by subtracting the right side of (14) only for n -- 0, 1, 2, and approximat- 
ing the hyperbolic functions by truncated Taylor series. In this manner the ultimate 
polynomial form for the integral in (13) is retained, in the subdomain 0 < H < 2, with a 
simple correction affected for six of the 33 elements in the (X, V)-polynomial coefficient 
matrix. 

4. Conclusions 

A set of algorithms has been described for evaluating the oscillatory free-surface source 
potential and its derivatives, in infinite or finite depth. The implementation of these 
algorithms is a nontrivial computational task, in view of the various separate subdomains 
which must be included, and of the substantial number of polynomial coefficients which 
are required ultimately. Thus it is appropriate to report briefly on the practical results 
which follow from this approach so that it can be appreciated as an alternative to the 
conventional numerical integration of (3) or (10a). 

For the infinite-depth case the algorithms described in Section 2 have been imple- 
mented in a Fortran subroutine " N E W G R E E N " .  This subroutine contains 332 lines of 
source code, exclusive of comments, and is self-contained except for the intrinsic functions 
(square-root, sine, cosine, log, and exponential). The two-dimensional polynomial coeffi- 
cients, and coefficients of the various approximations required for the exponential 
integral, Bessel, and Struve functions require a total of 261 constants in DATA state- 
ments. For one evaluation of the (complex) source potential and its derivatives, the 
maximum runtime of this subroutine is approximately 400 microseconds on an IBM 
370/168 and 800 microseconds on a VAX 11/782. (By comparison, the execution time on 
the VAX for one evalution of the Bessel function Jo(x) using the library subroutine 
MMBSJ0 of the International Mathematical and Statistical Library (IMSL) is between 
200 and 650 microseconds depending on the value of x.) 
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For the finite-depth case an analogous subroutine package " F I N G R E E N "  has been 
developed from the algorithms in Section 3. This is a larger program, with 880 lines of  
source code, excluding comments,  and 1301 coefficients in D A T A  statements. A maxi- 
mum of 12 milliseconds is required for one call on the FAX,  but the time for subsequent 
evaluations with the same value of  K h  = H is reduced to between 3 and 6 milliseconds. 
Thus, in the usual application to a boundary-integral program, the average runtime for the 
evaluation of the coefficient matrix in finite depth should be only about six times greater 
than for infinite depth. In all cases described both the potential and its first derivatives are 
evaluated simultaneously, with at least six decimals accuracy. 

Similar algorithms based on the combination of series expansions and polynomial  
approximations may be applicable to other types of  Green functions, including the case of  
a steady-state source moving with constant velocity beneath a free surface, and possibly 
also including Green functions of complicated mathematical form which arise in other 
branches of applied mechanics. 
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